Course Number: 9008
Length: 3 Days
Print Friendly, PDF & Email

RF Engineering Training Bootcamp (Live on-line and at your site or Tonex site)

RF Engineering Training Bootcamp Course covers all aspects of Radio Frequency Engineering, a subset of electrical engineering. The course incorporates theory and practices to illustrate the role of RF into almost everything that transmits or receives a radio wave which includes: RF planning, cellular networks including cellular technologies, 4G LTE, 5G, mmWave, 6G, THz bands, SIGINT, Radar, EW, Wi-Fi, BLE, Satellite Communications, GPS, VSAT, two-way radio, Point-to-point microwave, Point-to-Multi-Point Radio Links, Public Safety, Testing, Modeling  and Simulation and more.

RF Engineering Boot Camp provides participants with a solid understanding of RF surveys and planning, electromagnetic modeling and simulation, interference analysis and resolution, coverage analysis, propagation models, RF engineering, system specifications and performance, modulation, antenna theory, link design, traffic engineering, optimization, benchmarking, safety, RF testing and system integration and measurements. Design and production engineers and technicians interested in improving RF engineering skills through a practical approach will benefit from this course.

WHO SHOULD ATTEND?

This course is designed for engineers, scientists, technicians, managers, testers, evaluators, and others who plan, specify, design, test, operate or work with RF systems.

WHAT WILL YOU LEARN?

  • An overview of RF theory and operations
  • Explore the latest commercial wireless technologies including Bluetooth, WiFi, LTE, 5G, 6G  and SATCOM
  • Learn applications of RF to EW and SIGINT
  • An overview of RF spectrum and propagation models
  • Free Space Path Loss: details & calculation
  • How to validate feasibility of custom RF and microwave links
  • How to plan, design, simulate and test various RF and Microwave systems
  • Basics of RF Link Budget
  • Basics of RF systems performance that drive test and evaluation requirements
  • Transmitter and receiver testing
  • An overview of modulation
  • An overview of antenna theory
  • Test and Evaluation (T&E) of RF systems
  • RF Threat Modeling
  • Introduction to TEMPEST, EMI/EMC and SCIF

RF Engineering Bootcamp Agenda/Modules

RF 101

  • Radio Milestones
  • RF applications, services, and technologies
  • Types of Electromagnetic Spectrum (EM)
  • Electromagnetic radiation
  • EM Spectrum and wavelength
  • Frequency vs. wavelength example
  • The Radio spectrum
  • Wireless generations and data speeds

Overview of Radio Spectrum and Bands

  • ELF
  • SLF
  • ULF
  • VLF
  • LF
  • MF
  • HF
  • VHF
  • UHF
  • SHF
  • EHF
  • THF
  • Civilian names for various frequency bands
  • Military Names for various Frequency Bands
  • Popular bands
  • L band
  • S band
  • C band
  • X band
  • Ku band
  • K band
  • Ka band
  • Q band
  • U band
  • V band
  • W band
  • F band
  • D band

RF Engineering Principles

  • Fundamentals of RF Systems
  • Basic Building Blocks in Radio and Microwave Planning and Design
  • RF Principles, Design, and Deployment
  • RF Propagation, Fading, and Link Budget Analysis
  • Intro to Radio Planning for Mobile and Fixed Networks
  • RF Planning and Design for LTE,  LTE-Advanced 5G NR, mmWave, 6G and other Networks
  • RF Planning and Design for Satellite Communications and VSAT
  • RF Planning and Design for 2-way Radio Communications
  • RF Planning and Design for Radar and Jammers Path Survey
  • RF Impairments
  • Noise and Distortion
  • Antennas and Propagation for Wireless Systems
  • Filters
  • Amplifiers
  • Mixers
  • Transistor Oscillators and Frequency Synthesizers
  • Modulation Techniques
  • Receiver Design
  • Eb/No vs. SNR, BER vs. noise, Bandwidth Limitations
  • Modulation Schemes and Bandwidth
  • RF Technology Fundamentals
  • Types of Modulation: AM, FM, FSK, PSK, QPSK and QAM
  • RF Engineering Principals applied
  • Cellular and Mobile RF
  • Fixed Wireless RF (802.11, 802.16, HF, UHF, Microwave, Satellite, VSAT, Radar and GPS)

RF Propagation Principles-VHF/UHF/Microwave/mmWave/Sub THz Radio Propagation

  • Radio propagation basics
  • Radio signal path loss
  • The atmosphere & radio propagation
  • The Physics of Propagation: Free Space, Reflection, Diffraction
  • Free space propagation & path loss
  • Diffraction, wave bending, ducting
  • Multipath propagation
  • Multipath fading
  • Rayleigh fading
  • Free-Space Propagation Technical Details
  • Propagation Effects of Earth’s Atmosphere
  • Attenuation at Microwave Frequencies
  • Estimating Path Loss
  • VHF/UHF/Microwave Radio Propagation
  • Physics and Propagation Mechanisms
  • Propagation Models and Link Budgets
  • Link Budgets and High-Level System Design
  • Link Budget Basics and Application Principles
  • Traffic Considerations
  • Commercial Propagation Prediction Software

Atmospheric Propagation Effects

  • Attenuation at Microwave, mmWave and THz Frequencies
  • Rain droplets
  • Rain attenuations
  • Reliability calculations during path design
  • Diffraction, Wave Bending, Ducting

Signal Generation and Modulation

  • Overview of Modulation
  • Modulation Types
  • Baseband Signal
  • Amplitude Modulation
  • Frequency Modulation
  • Phase Modulation
  • Digital Modulation
  • ASK, MSK and PSK
  • Example PSK Modulation
  • Overview of BPSK, QPSK, QAM-16, QAM-64, QAM-256, QAM-1024, QAM-4096
  • Code Rate
  • Frequency Spectrum Usage as a Result of Modulation
  • Generating Signals
  • Digital Modulation
  • Overview of IQ modulation

Antenna Theory & Design Principles

  • Basic antenna operation
  • Understanding antenna radiation
  • The Principle of current moments
  • What are the antenna parameters?
  • Transmitted power, gain, bandwidth, radiation pattern, beamwidth, polarization,
  • VSWR, Return Loss and impedance
  • Physical parameters
  • Electrical parameters
  • Gain (dBi or dbd)
  • Beamwidth (in radians or degrees)
  • Radiation Pattern (hor & vert)
  • Antenna radiation patterns
  • Patterns in polar and cartesian coordinates
  • 3-dB beamwidth
  • Cross Polarization Discrimination (XPD – dB)
  • Front to Back Ratio (F/B)
  • Voltage Standing Wave Ratio (VSWR)
  • Return Loss (RL – dB)
  • What is Effective Radiated Power?
  • EIRP compared with Isotropic antenna
  • How Antennas Achieve “Gain”
  • Types of Antennas, Radiation Mechanism (Single Wire, Two-Wires, Dipole)
  • Current Distribution on Thin Wire Antenna
  • Radiation Pattern
  • Antenna gains, patterns, and selection principles
  • Antenna system testing

RF and Microwave System Specifications

  • Fundamentals of wireless communications
  • RF Systems
  • Introduction to microwave communication systems
  • Transmitters and receivers
  • Antennas and the RF Link
  • Modulation
  • RF Surveys and Planning
  • Radio Wave Propagation and Modeling
  • Frequency Planning
  • Traffic Dimensioning
  • Cell Planning Principals
  • Coverage Analysis
  • RF Optimization
  • RF Benchmarking
  • RF Performance
  • RF Safety
  • RF Simulation
  • RF Testing
  • RF System Integration and Measurements

Planning of RF Networks

  • Advanced topics in cell planning
  • Advanced topics in RF planning and architecture
  • Voice and data traffic engineering
  • Cellular and RAN optimization
  • Overview of  4G/LTE, 5G and 6G wireless and mobile communications
  • Microwave and mmWave systems
  • RF modeling and simulation
  • RF measurements
  • Basic radar systems
  • Phased-array systems
  • RF trends

workshop 1 – Advanced RF Systems Concepts and Designs

  • RF Signals and systems
  • Fundamentals of digital communication for wireless and RF systems
  • RF parameters
  • RF passive and active components
  • RF devices
  • RF noise and system impairments
  • RF system design for wireless and mobile communications
  • Overview OFDM/OFDMA and 4G/5G and 6G systems
  • Overview of MIMO and MU-MIMO for 4G/5G and 6G systems
  • Microwave transmission engineering
  • Software Defined Radio (SDR) and TDLs

Workshop 2 -RF and Microwave Systems Simulation, Testing and Feasibility Analysis

  • Design of high-quality RF and microwave communication systems
  • RF Testing
  • RF modeling and simulation
  • Link budget analysis
  • RF and microwave feasibility analysis
  • RF optimization principles
  • Site Acquisition
  • Design, analysis and optimization of wireless networks
  • Verification of network deployments for wireless networks
  • RF engineering principals
  • Good quality network and services
  • Network planning resources
  • Link budgets, scheduling and resource allocation
  • Preparation and Report generation
  • Real-time coverage maps
  • True-up RF modeling software
  • RF coverage and service performance measurements

RF Troubleshooting

  • Safety
  • Basic troubleshooting steps
  • Signal tracing
  • Signal injection
  • Lead dress
  • Heat sinks

Optional Labs and Calculations

  • Wireless Network Link Analysis
  • System Operating Margin (SOM)
  • Free Space Loss
  • Freznel Clearance Zone
  • Latitude/Longitude Bearing
  • Microwave Radio Path Analysis
  • Line-of-Sight Path Analysis
  • Longley-Rice Path Loss Analysis
  • United States Elevation Analysis
  • Parabolic Reflector Gain and Focal Point Calculator
  • Urban Area Path Loss
  • Antenna Up/Down Tilt Calculator
  • Distance & Bearing Calculator
  • Omnidirectional Antenna Beamwidth Analysis
  • Return Loss Calculator
  • Knife Edge Diffraction Loss Calculator
  • Scattering: gamma in/out from s-parameters
  • Lumped Component Wilkinson Splitter / Combiner Designer
  • Pi & Tee Network Resistive Attenuation Calculator
  • RF Safety Compliance Calculation
  • Microstripline Analysis & Design
  • Calculating Phase Line Length
  • 3-Pole Butterworth Characteristic Bandpass Filter Calculation
  • RF Pi Network Design
  • PLL 3rd Order Passive Loop Filter Calculation
  • Antenna Isolation Calculator
  • Working with SDR and HackRF

Basic and Advanced RF Training Courses

RF Engineering Training

Objectives

 

 

Request More Information